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Studying the fracture of solids caused by crack nucleation and growth requires a con- 
sideration of the processes taking place at the tip of a crack on the atomic level. Here, in 
spite of the recent development of the computer=aided engineering, the simplest atomistic models 
of cracks are still significant. Such a model permits a sophisticated analytical treatment 
while simultaneously it retains the main features of a real physical object, that is, a 
brittle crack in a solid. 

One of such models is suggested by Hirth and is applied in [I] to the description of 
crack growth by kink propagation. The model is a linear tetratomic chain with an inter- 
action of the nearest neighbors. The middle bond of the chain is located before the tip of 
the crack and breaks upon its advancement, while two extreme bonds simulate compliance of a 
crystal lattice. Markworth and Hirth [i] analyze the chain's behavior during quasi-static 
realization of a complete cycle: initial state-growth to an ihflnite length--return to 
the initial state. They obtained the results concerning breaking and rebounding of the middle 
atomic bond, the values of the energy barriers being overcome, and influence of the middle 
bond weakening. It was assumed that the chain retained symmetry at any degree of growth. 

The problem of quasi-static growth of atomic chain located at the tip of a crack is 
considered analytically in the present paper: i) in symmetrical statement, taking into ac- 
count interaction of nonadjacent atoms, 2) without restriction on symmetry assuming the inter- 
action of only nearest neighbors. The results are compared with that in [i] and some conclu- 
sions on the model's applicability are also made. 

I. Statement of the Problem. Let us consider at 0 K a linear chain of a sufficiently 
large (no less than 6) number of single-type atoms with point masses, which permit displace- 
ment only along the chain line. The interaction between atoms will be assumed as a central 
paired one, so that the potential energy v of the interaction of two atoms is a function v(r) 
of the distance r between them. In the initial state, under the absence of external forces, 
the distances between the atoms-nearest neighbors are some quantities which we consider to 
be equal and denote by r0, neglecting a weak boundary effect. 

We will grow the chain by external forces applied to extreme atoms which are equal in 
absolute value and opposite in direction. Then the distances between the atoms will change; 
it is assumed that these changes occur sufficiently slowly so that the chain (and ~of each 
atom singly) remains in the state of quasi-static equilibrium, i.e., of a minimum of poten- 
tial energy. 

We enumerate the atoms of the chain by integral numbers so that the atoms with numbers 1 
and 2 fall in its center. Also, we will assume that upon growth the atoms with numbers 
..., -i, 0, 3, 4,... always occupy the positions corresponding to an ideal structure of 
grown chain: 

�9 - .  = r-l.o = ( i / 3 ) ~ . 3  = ~.4 = . , ,  ( i ,  i) 

(ri,j is the distance between the atoms i and j). 

Let the chain be grown to the state in which the bond lengths in (i.i) are equal to 
R. We fix all the atoms of the chain in ideal positions determined by the value of R, except 
for the atoms 1 and 2 which are unconstrained in displacements. Then the positions of un- 
constrained atoms depend totally on the lengths of their two bonds, for example, r0, I and 
r~, 3 (Fig. i). Since r0, 3 = 3R, we have 

rl,2 = 3R--~,l--r2,3.  (1.2) 
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Fig. 1 

Note that another appropriate selection of quantities, for example, r0, l and rl, = or r0, = and 
r1,~, leaves the results unaffected. 

Parameter R is a convenient characteristic of the chain growth, because it is con- 
nected with a deformation N of the atomic bond between the nearest neighbors by the relation 
N = (R - r0)/r 0. A similar characteristic (the length of the tetratomic chain equal to 3R in 
our notation) appears in the Hirth model. 

The total potential interaction energy W of the chain atoms can be presented in the form 

W=W=+Wd, (1.3) 

where W d ~ Wd(r0,1; r2,3; R) is the interaction energy of the atoms 1 and 2 between them- 
selves and with the neighbors and W c E Wc(R) is the interaction energy of the remaining (con- 
strained in displacements) atoms between themselves. It follows from (I.i) that W c depends 
only on R. Thus, for a fixed value of R the total potential energy W and, consequently, the 
chain's equilibrium are determined by the quantity W d �9 

Let us take the Morse function as a potential of interatomic interaction 

v (r) = vo {exp [ - - 2 a  (r - -  r~) ] - -  2 exp [--.= (r - -  ~)  ] }, vo > O. ( 1 . 4 )  

For a possibility and field of application of the Morse function to the strength analysis see, 
for example, [2]. 

Following the approach from [I], we introduce dimensionless variables 

~1 = exp [a (r0.1 - -  r~)], ~2 = exp [a(r2.a - -  re)I ,  9 = exp [=(R - -  re)] .  ( 1 . 5 )  

The l a s t  f o r m u l a s  e s t a b l i s h e d  a o n e - t o - o n e  c o r r e s p o n d e n c e  b e t w e e n  t h e  q u a n t i t i e s  H i ,  62 ,  P 
and r0,1, r2,3, R. Here p determines the chain growth and ~i and ~2 determine its outline, 
i.e., the positions of two unconstrained atoms. With new variables (1.3) will have the fol- 
lowing form 

I V ( h ,  ~2, p ) =  Wo(p )+  W~(~,, ~=, p), ( 1 . 6 )  

where the function notations remain as before. 

Investigating the equilibrium of the chain and determining its equilibrium configurations 
and their changes during the process of growth, we shall find an answer to the question of 
the chain's behavior upon quasi-static growth. 

2. Interaction of Only Nearest Neighbors. With such a limitation the initial distance 
r 0 is equal to r e . We introduce notations W ~ W~, and W~ for the functions W, Wc, and Wd, 
respectively. The quantity W$ 5 W~(r0,~; r2,~; R)= v(r0, I) + v(rl, 2) + v(r2,3). Taking 
into account (1.2) and passing to variables (1.5), we have 

_ _ , =-2 2~-i~ (2.1) W~(~,, ~ ,  p) = v 0 ( ~  ~ 2~7 ~ + ~ P - ~  2 ~ = P  - s  = =2 - -  ~2 ,. 

L e t  u s  f i x  R and  p c o r r e s p o n d i n g  t o  i t ,  and  t h e r e b y  t h e  p o s i t i o n s  o f  a t o m s  o f  an  " i d e a l "  
part of the chain. Then the chain's equilibrium configuration is determined by the equilib- 
rium positions of tbe atoms I and 2, and W ~ depends only on ~I and ~2 and is equal to W~ + 
const. Therefore, the equilibrium equations for the chain 8W~ = 0, 8W~ = 0 take the 
form 

= OWa (~,  ;~, p)/O~, = O, ( 2 . 2 )  

coinciding with the equilibrium equations for the block of atoms i and 2. 

Finding the derivatives 

OW~ (~,, ~, p)/o~ = 2~y~p-~ ( -  ~ ~ ~p~ + L~_~o~),, 

ow~ (~, ~ ~)/o~ = 2vg~o  -~ ( -  ~ + ~p~ + ~'~'~., - %~bO 

and factoring the expressions in parentheses, we see that system (2.2) is equivalent to a set 
of the following four systems of equations with the unknowns ~z, g= and parameter p: 
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"~" , p3 ~p3 ~T --~10 3=0, ~ -~O ~=0; 

$~L - p~ = 0, $,~ + ,o~ - Lp 3 = 0; 

~ L + p ~  Lp ~ O, ~G = 0 .  

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

Eliminating parameter p from each system separately shows that the solution of the first 
two of them must have the following property 

~i = ~2, (2.4) 

and the solution of the last two systems must have the property 

h~2 = h + ~2. ( 2 . 5 )  

S y s t e m s  ( 2 . 3 )  h a v e  o n e  s o l u t i o n  e a c h ,  w h i c h ,  t a k i n g  i n t o  a c c o u n t  ( 2 . 4 )  a n d  ( 2 . 5 ) ,  c a n  
be written in the form 

{~l = 9, ~2 = 9}; (2.6a) 

~,~1  l) -1  9a ~ (~2 - -  ] ) -1  93}; ( 2 . 6 b )  

{~ (~ _ i)-~ = 93 ~(~ _ I)-2 = 9:~}; (2.6c) 

{ $ ~ ( ~ - - 1 )  - a = 9  3 , $ ~ ( $ ~ - - 1 ) - ' = P 3 } .  ( 2 . 6 d )  

We emphasize that Eqs. (2.6a)-(2.6d) are the solutions of systems (2.3) under conditions 
(2.4) and (2.5). Otherwise, certain extraneous values of $i and $2, which are not the solu- 
tions of systems (2.3), satisfy these equations. 

Relations (2.6) together with (2.4) and (2.5) determine in space {$i, ~2, 9} four tra- 
jectories of the chain's equilibrium (see Fig. 2). The trajectories consist of stationary 

, ~ 0 
points of the potentlal energy0functlon W d and are denoted by numbers 1-IV according to 
(2.6a)-(2.6d). The function W d has no other stationary points. Equations of the trajec- 
tories, being given (explicitly or implicitly) in the form {gi = $i(P), i = i, 2}, make it 
possible to find all possible equilibrium configurations of the chain for a fixed value of its 
growth. 

The points of the straight line (2.6a) correspond to an "ideal" structure of the chain 
r~, I = r2, 3 = R = r e + ~-i inp [from (1.5)], including the point A(I, i, I), which corresponds 
to the initial state; therefore, the equilibrium trajectory I will be called basic. Quasi- 
static growth of the chain from the initial state, i.e., growth 9, corresponds to the 
motion along the basic trajectory from the point A in the direction of A 2, until the "ideal" 
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state of the chain becomes unstable. Then the chain will pass (smoothly or "crackwise"- is 
yet to be studied) into a stable "nonideal" state, determined by a point on one of the equi- 
librium trajectories II-IV, therefore called secondary ones. It follows from (2.6) that for 
the points of trajectory II "nonidealness" is characterized by the ratio between the lengths 
of the bonds r0, I = r2, 3 ~ R, for the points of trajectories III and IV r0, l ~ r2, s and are 
not equal to R. An exclusion is the point 

P(2, 2, 2) (2.7) 
common for all four trajectories, which is the only point of their intersection (see Fig. 2). 

Let us consider a mutual arrangement of trajectories in space {~i, ~2, P} (Figs. 2, 3). 
From (2.4) and (2.5) it follows that trajectories I and II are located in the symmetry plane 
{~I = $2}, while III and IV belong to a cylindrical surface, specified by Eq. (2.5), with 
generatrices parallel to the p axis, which intersects the plane {El = ~2} along the straight 
line {~i = $2 = 2}. Further, $i and p in (2.6b) and (2.6c) are connected by the same relation 

~ ( ~ 1  - -  t )  - 1  = 03, ( 2 . 8 )  

Due to this trajectories II and III belong to the cylindrical surface, determined by Eq. 
(2.8), with generatrices parallel to the ~2 axis, and their projections on the plane {~2 = 
const} coincide. In the same manner trajectories II and IV belong to the cylindrical surface 

~ (~ _ t ) - 1  = p3 ( 2 . 9 )  

with generatrices parallel to the ~i axis. In that case trajectory II is the intersection of 
surfaces (2.8), (2.9), and the symmetry plane {~i = $2}. 

Of two equations specifying each secondary trajectory, at least one has the form x 3 - 
p3 x + p3 = 0 (where $i or $2 occupy the place of x). For p e 3/~this equation has two real 
positive roots: 

xcu = 2 Tp3/3 cos(~/3), zc~ = 2Y93/3 cos( (~ + 4a)/3). (2 .10)  

(__ {27 ~I/2~ = 3/~ x( = 3/2. For p < 3/~ the equation Here ~ = arccos ~p.~] ], moreover for p i) = x(2) 

hao_nO positive real roots. Therefore, at all the points of the secondary trajectories p 
3/?/'4 and equality is attained at the "lowest" points 

3~- ~'3"7 " 3/~'4) (2.11) B~(3/2, 3/2, 3/r  4), CI(3/2, 3, oil" ,), D1(3, oi2, 

of trajectories ll-lV, respectively. 

Points (2.11) divide "their own" trajectories into two infinite brancheo__(depicted in 
Fig. 2 by solid and dashed lines). Specifying the value of p larger than 3/?/4 determines 
exactly two points on each of the secondary trajectories [this follows from (2.5), (2.6), 
and (2.10)], which belongs to different branches, because one of the roots of (2.10) are 
then necessarily less than 3/2. In order to select one point out of two, it is required to 
additionally indicate the value of any coordinate, for example, ~i, thereby specifying a 
branch. 

The points of curves 1-IV, being a total set of stationary points of the potential 
energy function W~(~I , ~2, P), determine all possible positions of the chain equilibrium. 
We verify the stability of each of them in the following way. For a fixed value of the vari- 
able p, the energy function W~($I, $2, P) becomes the function of two variables gl, ~2: 
W~Ip=const ~ W~($~, $2). The extreme of the function W~(~1, ~=) can be attained only at 
its stationary points, and existence and type of the extreme are determined by the signs of 
the expressions 

(W~)n(W~)22- [(W~)a2] ~ and (W~)ll (2 .12)  

acco rd ing  to the  known r u l e s .  Here 

= [ (3  - 2%) + 

- o w~ - = ~ /  ~ = 2Vo~?'p-~ [(3 2~) p~ + ~I.~, 

(w3)12- = = - 

Obviously, stationary points of the function W~(~, ~) are the only points of inter- 
section of trajectories 1-IV with the corresponding plane {p = const}. Finding their coor- 
dinates from Eqs. (2.6) (which is possible, since p = const) and substituting them into the 
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second-order derivatives, we define the signs of (2.12). By making p vary, we obtain infor- 
�9 0 

mation on the existence and type of the extreme of the functlon Wd($ m, $2, P) at each point 
of the equilibrium trajectories I-IV. This information is summarized in Table i. A certain 
complexity lies in the fact that the correspondence between p and the points of secondary 
trajectories is not one-to-one. However, it will be such a correspondence for the points of 
the branches of these trajectories determined above. For this reason it was necessary to 
indicate in the table the values of ~i together with p. Note that the analysis with the 
help of second-order derivatives does not give the answer to the question of whether the 
extreme exists at points P, B I, C I, and DI. However, it is easy to make sure that there 
�9 . 0 
is no extreme of the functlon W d at these points, if we can find for each of them at least 
one curve passing through it and lying in the plane {P = const}, and such that upon motion 
along this curve the function W~ has a bend at the point under consideration. For the points 
PandB l sucha curve will be the straight line {~i = ~2}, and for the points C l andD1, curve (2.5). 

The data in Table 1 demonstrate that points of one of the two branches into which each 
secondary equilibrium trajectory is divided, correspond to minimums of W~, while at points 
of the other branch, including the "division" point with index i, the function W~ has no ex- 
treme. Therefore, we will call the first of the indicated branches stable and the second, 
unstable. They are depicted in Fig. 2, as usual, by solid and dashed lines. 

Remark. In what follows, we shall write, for short,"the equilibrium position (state) on 
the trajectory" instead of "equilibrium position (state), to which there corresponds a point 
on the trajectory." 

Using the table data, we observe how the change of the extension parameter p affects the 
number and stability of the possible equilibrium positions of the chain. First of all let us 
note that for each value of p from the range p ~ 1 there exists an equilibrium position on 
the basic trajectory, which we will also call basic. It is stable if 1 !!P < 2 and unstable 
if p ~ 2. For i < p < 3/~the chain has no other equilibrium positions and for p = 3/~ 
there are three more unstable positions at points Bl, Cz, and D l of the secondary trajec- 
tories. If 3/~/~< p < 2, there are seven possible equilibrium positions: the basic one and 
one per each of the six branches o~ three secondary trajectories. Since there are only three 
stable branches out of six, for 3/~4 < p < 2 there exist four stable equilibrium positions 
and three unstable ones. 

For p = 2 the pattern changes again. Three unstable equilibrium positions, located on 
the secondary trajectories, merge at point P with the basic position, forming unstable equi- 
librium positions on the basic trajectory. At the same time three unstable secondary positions 
hold: the points B( 1.236; 1.236; 2), C(1.236;5.236; 2), and D(5.236; 1.236; 2). Finally, for 
p > 2 there are again seven equilibrium positions: unstable basic position plus one stable and one un- 
stable position on each of three secondary trajectories (according tostability of their branches). 

Let us establish one more point concerning the behavior of the energy function W~ at the 
points of the equilibrium trajectories (2.6). Let for a given value of p = p~ ~ 3/~the 
points (~i, ~2, P~), (~i, 62, P~), (Yl, ~2, P~) belong to stable branches of trajectories ll- 
IV, respectively. Then from (2.5), (2.6), (2.8), and (2.9) it follows that ~l = e2, ~i = 61, 
e2 = Y2 and it is easy to show that the differences 
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TABLE 1 

.Trajec- 
tory 

I I  

I l l  

IV  

p - 

t ~ p < 2  

9>2 

> 3i~,.'~ - 

3 / l / ~ -  

p > 3/~/~ 

Presence and 
type of extreme 

Minima 

Part, branch 
~f trajectory 
~r point 
!From P in the 
direction of 
A 2 

P 

From P in the 
direction of 
A 2 

Bx 

No extreme 

Maxima 

3/2 No extreme 

~i < 3/2 BIB ~ Minima 

lrll Bs 

C1 

CIC2 

C, C~ 

DI 

~, > 3/2 

3/2 

~, < 3/2 

~ > 3/2 

3 

No extreme 

Minima 

No extreme 

~l < 3 DxD s , 

~I > 3 D,D~ Minima 

are equal to zero, i.e., for a fixed p the values of W~ (and W ~ as well) coincide at the corre- 
0 = sponding points on stable branches of the secondary trajectories, in particular, W~I B = Wdl C 

W~I D = -2.2725v 0. The same is also valid for the points of unstable branches, as well as for 
points BI, CI, and D l, where W~ = [24/3/3 - 2s/3]v0 = -2.3349v 0. At point P W~I P = -2.25v 0. 

We construct a general picture of the chain's response to growth. The degree of exten- 
sion will be specified as before, i.e., with the help of parameter p. 

I. p = i. There is no action of external forces, the chain is at the initial state of 
stable equilibrium (point A) with equal bond lengths of the nearest neighbors: r0, I = r2, 3 = 
R=r 0 =r e. 

2. 1 < p < 3/~. Under the influence of the applied load the chain grows, retaining 
an ideal structure due to uniqueness and stability of the basic equilibrium state. In space 
{$i, $2, P} this corresponds to the motion along the basic trajectory from point A to point 

A~(3/~7, 3/~7, 3/97). 

3. O = 3/~. The chain is in a stable equilibrium state A I, since the other three 
possible states B1, C1, and D l on the secondary trajectories are unstable. 

4. 3/~< p < 2. For each value of p in this range there are four different stable 
equilibrium configurations of the chain, in which the function W~ has local minima. 

However, if the energy barrier separating the "basic" minimum from the "secondary" ones 
is not overcome, the chain remains to be "ideal" up to the value p = 2, which corresponds to 
the motion from A 1 to P along the basic equilibrium trajectory. 

5. p = 2. A critical moment of growth is the point P of stability loss of an "ideal" 
0 

configuration of the chain. The function W d has a bend at the point P, while the barrier, 
which separated the "basic" equilibrium position from the "secondary" ones, is absent now and 
the chain, reducing the energy W~ (and consequently W ~ by 0.0225v0, passes "crackwise" from 
an "ideal" configuration into one of three possible "nonideal" ones (the points B, C, and D 
on the secondary trajectories). Here the values of energy are equal (see above); therefore, 
it seems impossible within the present consideration to say definitely which configuration 
exactly will be acquired by the chain. This probably depends on some of its additional prop- 
erties. 

6. p > 2. Upon further growth the chain maintains a stable "nonideal" configuration, 
"selected" by it during the transition to one of the secondary trajectories, which corresponds 
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to the motion of a point over a stable branch of this trajectory in the direction of increas- 

ing p. 

Let us assume that the chain configuration does not change by overcoming a certain energy 
barrier during the whole process of growth. Then there are three variants of the chain 
behavior at monotonic growth, determined by the following diagram: 

A ~ p crack ..... > 

Trajectory I 

B .... + B. z and further 

Along trajectory II (VI), 

or 

C .... + C z and further 

along trajectory III (V2), 

or 

D .... + D= and further 

along trajectory IV ~ (V3). 

(2.13) 

The dashed arrow in the diagram denotes a smooth transition from point to point along the 
indicated trajectory. 

Let us trace the changes in the chain configuration upon following each of the variants 
(VI)-(V3). From Eqs. (i.i), (1.2), and (1.5) we have expressions of interatomic distances in 
the extended chain in terms of quantities ~i, g2, P: 

�9 . .  = r- l ,o  = ( t / 3 )  to.3 = r3,4 = . . .  = B = r, + a - '  In p, 

~.~ = r~ + a - :  In ~: = R  + a - '  i n  ( ~ : p - t ) ,  ( 2 . 1 4 )  

~ ,3  = r~ + a -I  In ~2 = H + a -I  ln(~2p-1).  

As f o l l o w s  f r o m  ( 2 . 1 3 )  a n d  E q s .  ( 2 . 5 )  t h e  b o n d s  b e t w e e n  t h e  n e a r e s t  n e i g h b o r s  a t  f i r s t  
e x t e n d  e q u a t l y :  - - -  = r - z , o  = r 0 , 1  = r l , 2  = r 2 , 3  = r 3 , 4  = - - .  = R. I t  h a p p e n s  l i k e  t h i s  up  t o  
a c r i t i c a l  moment  o f  e x t e n s i o n ,  when 

P = 9,  = 2, R = R ,  = r~ ~ a - l l n p , ~ r ~  + 0 ,6931~- ' .  ( 2 . 1 5 )  

When i t  i s  a t t a i n e d  t h e  b o n d  l e n g t h s  r 0 ,  ~,  r z , 2 ,  r = , a  o f  u n c o n s t r a i n e d  a t o m s  u n d e r g o  s h a r p  
c h a n g e s  a c c o r d i n g  t o  s c h e m e  ( 2 . 1 3 ) .  U s i n g  ( 2 . 1 4 ) ,  t h e  d a t a  o f  T a b l e  1,  a n d  g r a p h s  o f  F i g .  
2 ,  3 ,  we c o n s i d e r  i n  t u r n  t h e  v a r i a n t s  g i v e n  i n  t h e  d i a g r a m .  

Variant (VI). From (2.6b) follows 

r0~ = r23 =R +(I/3)=-' ]n(h -- i)< R, 

r~.2 = R - -  ( 2 / 3 ) a  -1 t n ( h  - t ) >  R, 

since ~z < 3/2. In particular, at point B 

B B 
ro,1 ---- r2,3 .~ R ,  - -  0 ,48 t2a  - I  ~ r~ -+- 0 ,2119a- I ,  

rBl,~ N~ R ,  -}- 0 ,962~a-~ ~ r~ + 1,6556a-1.  

As p i n c r e a s e s  t h e  d i s t a n c e  r l ,  2 i n c r e a s e s  a n d  t h e  d i s t a n c e s  r 0 ,  ~ 
p -> co rl,2 -> o% r0,1 = r2, 3 + re. 

Variant (V2). Combining (2.5) and (2.6c), we have 

roj =rl,2 = R + ( i / 3 ) a  - l  l n ( h  -- :1)< R, 

r~.~= R- - (2 /3 )a  -I in (h  - -  l ) > R ,  

s i n c e  ~ < 3 / 2 .  I n  p a r t i c u l a r ,  a t  p o i n t  C 

roaC = r e  ~ R ,  - -  0 , 4812a - I  ~ r~-F 0,2119a -1  

rC.3 ~ B ,  + 0 ,9624~-1 ~ re + t ,6556~-*-  

As p i n c r e a s e s  t h e  d i s t a n c e  r 2 ,  a i n c r e a s e s  a n d  t h e  d i s t a n c e s  r 0 ,  1 
p -> co r2,3 -> ~, r0,1 = ri,2 + re . 

Varian t (V3). Combining (2.5) and (2.6d), we have 

r0,, = B  + ( 2 / 3 ) a  - l  l n ( h  -- l ) >  R, 

( 2 . 1 6 )  

= r2, s reduce, so that for 

(2.17) 

= rl, 2 reduce so that for 
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( 2 . 1 8 )  rr.2 = r2,3 = R - -  ( l / 3 ) a  -l ln(~L - - I ) <  R, 

s i n c e  ~ > 3. I n  p a r t i c u l a r ,  a t  p o i n t  D 

rDo.1 ~ R . + 0 , 9 6 2 4 a - l ~ r e  + t ,6556=-L 
1.D D 

1.z = r ~ , s ~ - , R , - - O , 4 8 t 2 ~ - l ~ , r e - q - O , 2 t t 9 ~ - l .  

As p i n c r e a s e s  t h e  d i s t a n c e  r 0 ,  1 i n c r e a s e s  and t h e  d i s t a n c e s  r ~ ,  2 = r 2 ,  3 r e d u c e ,  so  t h a t  f o r  
p + ~ ro, I + ~, rl, 2 = r2, 3 + r e . 

The analysis carried out demonstrates that: a) a critical value of R* coincides with a 
critical bond length in an isolated biatomic molecule with an interaction according to (1.4) 
(the molecule is found from the maximum condition d2v/dr 2 = 0 of the interaction force); b) 
when this critical value is attained, out of three interatomic bonds 0-i, i-2, 2-3, which 
are "free" in selecting their lengths, two degrade and the third grows jumpwise to the length 
of a supercritical one, which under conditions of our problem can be interpreted as its break- 
ing; c) new lengths of these three bonds do not depend in a quantitative sense on the variant 
of behavior selected by the chain [this follows from (2.16)-(2.18) and is well illustrated by 
the points B, C, and D]. Like the lengths of the remaining bonds, they are determined only by 
the degree of growth; and d) upon further monotonic growth of the chain there are no 
other qualitative changes in its state, similar to those described in item b. 

3. Consideration of Interaction between Second Neighbors. In that case the term W d in 

0 the sum v(r_ I l) + v(rl z) + v(r0,2) + v(r2,4) of (1.3) will contain besides the energy W d ~ , 

interaction contributions of atoms 1 and 2 with their second neighbors. From (I.i) and (1.2) 

it follows that r_1, I = R + r0,1, rl, 3 = 3R - r0,1, r 0 2 = 3R - r~,3, r2, 4 = R + r2, 3. Pass- 
ing to variables (1.5), we obtain 

wd (L, ~, p) = w ~  (~. ~, p) + s~F~p -~ - 2 ~ ? ~ p - ~  + ~ o - ~  - 

- -  - -  2~--2 --~__2a~Ip_l, 2e~lp-a + e ~ p  -6 2a~2p-3 + s ~2 P " ( 3 . 1 )  

where  W~(~I,  ~2, P) i s  d e t e r m i n e d  by ( 2 . 1 )  and 

e = exp( - -a r , )  ( 3 . 2 )  

is a dimensionless small quantity, which depends on the parameters of the Morse potential 
(for instance, for certain metals 1/88 < ~ < 1/23, according to [3]). Note that considera- 
tion of interaction between second neighbors leads to a change in the energy W d by a small 

0 ~O(W~), due to which the chain's quantity of order e: W d = W~ + eO(W~). Similarly, W c = W c + 
total potential energy W = W ~ + sO(W~ In addition, Eq. (3.1) well illustrates that mutual 
repulsion of atoms, as compared to their attraction at great interatomic distances, may be 
neglected: the corresponding terms have different order with respect to ~. 

In what follows we will neglect the terms containing s to a power higher than the first. 
As in Sec. ~2 we fix the value of p and, setting up equations for the chain equilibrium, we 
arrive at a system of equations with respect to ~l and ~2: 

- -  ~tg~--~2P3-{-e~tP ~ --~1Ve~3~3 = O, 

- p~ + ~p~ + ~ - L$~p ~ + ~ p ~  - ~ p ~  = o. 

We transform it to the form 

s 2 
(~[~2 - -  P ) ( ~  q- p3 _ ~pa) _ e~pZ ( ~  _ pZ) = 0, ( 3 . 3 )  

- + - - = o .  

Note that discarding the terms containing ~ in the last system, we reduce it to the system 
ensemble (2.3), as would be expected. 

One solution of (3.3) is obvious: 

{~ = p, ~ = p} ; ( 3 . 4 )  

h o w e v e r ,  t o  o b t a i n  t h e  r e m a i n i n g  s o l u t i o n s  in  t h e  same way i s  i m p o s s i b l e .  N o n l i n e a r i t y  o f  
t h e  s y s t e m ' s  e q u a t i o n s  s u g g e s t s  t h a t  h e r e  t h e  b i f u r c a t i o n  t h e o r y  me thods  f o r  s o l v i n g  non -  
l i n e a r  e q u a t i o n s  can  be a p p l i e d  [ 4 ] .  I n d e e d ,  t h e  a n a l y s i s  o f  i n t e r a c t i o n  o f  t h e  n e a r e s t  
n e i g h b o r s  h a s  shown t h a t  t h e  main  p o i n t  in  s t u d y i n g  t h e  c h a i n ' s  e q u i l i b r i u m  i s  t h e  d e t e r m i n a -  
t i o n  o f  t h e  p o i n t s  and f o r m s  o f  s t a b i l i t y  l o s s  o f  t h e  b a s i c  e q u i l i b r i u m  t r a j e c t o r y ,  i . e . ,  t h e  
transition from a certain "basic" solution of equilibrium equations to "secondary" ones. 
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A general investigation, taking into account nonsymmetrical forms of the chain equilib- 
rium (r0, I ~ r2,a), requires a solution of a complex problem of the bifurcation theory for 
the system of two equations in two unknowns $z and $2, and two parameters p and ~; therefore, 
we consider below only a case of symmetry r 0 z = r2 a. 

Under such a condition El = $2 = ~ and two equations of the chain equilibrium are reduced 
to one: 

f (~, ~, p) = (~ - -  1) p6 + ~6 _ ~p3 + ~ p 5  _ E~3p3 = 0. ( 3 . 5 )  

A real function F of real arguments is continuous and has continuous partial derivatives of 
any order with respect to all the arguments. Factoring the left-hand part of (3.5): F(g, 
s, p) = ($ - p)F1(~, s, p), where 

Ft (~, ~, p)=,(~2 + ~p + p2) (~s _ ~p~ + p3) ~p3(~ + p), ( 3 . 6 )  

we have an apparent solution of (3.5) 

~ = p, ( 3 . 7 )  

whose existence follows also from (3.4). Solution (3.7) corresponds to an "ideal" configu- 
ation of the chain and we will call it basic, as in Sec. 2. The point (Pb, Pb) will be a 
branch point of the basic solution (3.7), if there exists at least one solution 

~ =~(~, 9) (3.8) 

of the equation FI(~, g, p) = 0, satisfying the condition Pb = ~(g, Pb) and defined in some 
neighborhood of the point (Pb, Pb)" Geometrically this means that curves (3.7) and (3.8), 
lying in the plane (g, p), intersect at the point (Pb, Pb)" 

According to the general theory (see [4], pp. 13, 26), such points exist if the de- 
rivative 8F/3~ is equal to zero at these points. Substituting the relation 3F(~, g, p)/8~ = 
0 into the equation $ = p, we find the coordinates of the branch point (correct to the 
first-order magnitude with respect to g) 

= 2  - -  (2 /3 )  ~. ( 3 . 9 )  

In order to find solutions (3.8), branching off from the basic solution at the point 
(Pb, Pb), we make a substitution $ = ~ + Pb, P = % + Pb in (3.6) and represent the expression 
FI(r s, %) in the form of a polynomial in the variables ~ and % with coefficients depending 

one: F~(L~,~)= ~ '(~)~%~ _ .~F~ - Applying the Newton's diagram method [4] to the equation F~(~, 

~, X) = 0, we obtain in the neighborhood of the point (~, %) = (0, 0) its solution in the 
form of a convergent series in integral positive powers % and coefficients depending on 
e. According to the adopted simplification, we retain in these coefficients only the quan- 
tities of the order not higher than the first with respect to g: ~(s, %) = (3 - (4/3)~)% + 
o(%). Making a reverse substitution, we find in the neighborhood of the point (Pb, Pb) the 
following solution 

~(s, p ) = . p b + ( 3 - - ( 4 / 3 ) 8 )  (p - -  pb~+ o(p - -  Pb) ( 3 . 1 0 )  

of the equilibrium equation (3.5) branching off from the basic solution at the point (Pb, Pb) 
and presented in the form of a convergent series in integral positive powers p - Pb" Besides 
(3.7) and (3.10), Eq. (3.5) has no other solutions passing through the point (Pb, Oh)" 

It is easy to show that in space {$z, ~2, P} along the basic equilibrium trajectory of 
the chain {~ = g2 = P}, determined by relation (3.4) [or (3.7)], the function W d (without 
the terms with g2) has minima for p < Pb and maxima for P > Pb" In addition, the func- 
tion has a bend at the point (Pb, Pb, @b), which is the point of stability loss of an "ideal" 
configuration of the chain and its transition to a "nonideal," but symmetrical (since r0, ; = 
r2, a) configuration determined by (3.10) in the neighborhood of this point, taking into ac- 
count that gz = g2 = $. 

We have obtained in Sec. 2 that upon interaction of the nearest neighbors symmetrical 
forms of the chain equilibrium are given by relations (2.6a) and (2.6b), while the coordi- 
nates of the branch point of the corresponding trajectories are given by Eq. (2.7). 
Using the Newton's diagram method we can represent the dependence (2.6b) in the neighborhood 
of point (2.7) in the form of the convergent series 

~, = ~ = 2 +  3 (p - -  2 )+  o(p- -  2) ( 3 .11 )  

in integral positive powers p -- 2. 
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Comparing (3.11) with (3.10) and (2.7) with (3.9), we arrive at a conclusion that in the 
symmetrical statement of the problem a consideration of interaction between the atoms-second 
neighbors leads to a change in the parameters being defined by a magnitude of the order ~. 

4. Discussion. From the terms of the problem it is easily seen that it actually deals 
with a tetratomic chain with fixed terminal atoms 0 and 3, "inserted" into a rigidly fixed 
unidimensional atomic array. Such a statement is caused by the necessity to take into account 
the interaction between nonadjacent atoms and, generally speaking, in Sec. 2 it could be re- 
fused; the authors, however, did not do it for keeping the model's generality. Thus, the 
results obtained can be compared to the results from [I]. 

The comparison shows that removing the restriction on the symmetry, imposed on the chain 
in [i], results in the appearance of two nonsymmetrical forms of stability loss of its "ideal" 
configuration. Moreover, when the critical state (2.7) is attained, stability loss can take 
place both according to the symmetrical form analyzed in [i] and according to nonsymmetrical 
forms being revealed, and there is a coincidence of the corresponding characteristics of the 
chain (bond lengths and energy) in all the forms of secondary equilibrium. Probably, it 
should be expected that any imperfections in the chain's structure (for example, the pres- 
ence of a substitutional atom) violate such an "equality" of forms. The authors of [i] ana- 
lyzed one of such imperfections, namely, weakening of the chain's middle bond, but as applied 
to the calculation of energy barriers on the way of crack propagation and only on the assump- 
tion of the chain's symmetry. 

Consideration of interaction between nonadjacent atoms, characterized by a change in the 
chain's potential energy by a magnitude of the order of a small parameter g, does not intro- 
duce corrections into the qualitative behavior of the chain in a symmetrical statement of the 
problem, while quantitative changes in the parameters have the order of e. In the general 
statement, however, even such a small variation can be of great importance, for example, in 
determining the form of the first stability loss of an "ideal" state of the chain. 

If the Hirth model, due to symmetry, is applicable only to atomistically acute cracks, 
then the investigation results in Sec. 2 of a more general case of the chain growth can 
be used for modeling propagation of a crack blunted as a result of a shear and dislocation 
emission. Let atoms 0, i, 2, 3 in Fig. 1 form the tip of the blunted crack, then application 
of the force that causes a critical chain growth results in breaking of one of 0-i, 1-2, 
2-3 bonds. This can be considered as penetration of an acute crack from the tip of the 
blunted one. 

The results of the work also relate to the problems of crack nucleation. Novozhilov [5] has 
formulated an approach to brittle cracks as nontrivial forms of equilibrium deformation of 
an elastic body on application of an extending load, illustrated by a simple example of sta- 
bility loss of a medium atom in a triatomic chain. The above investigation into the equilibrium 
of a tetratomic chain with two free atoms confirms the concept proposed in [5]. 
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